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Abstract- Turbo codes not only achieve near Shannon- 
capacity performance, but also have decoders with modest 
complexity, which is crucial for implementation. So far efficient 
architectures for decoding of turbo codes have been proposed 
that is suitable for serial processing. In this paper a novel 
architecture for very high-speed turbo decoder is presented. The 
performance of this decoder is illustrated and the tradeoff 
between speed and efficiency is discussed. It  is shown that some 
decoders can run faster by some order of magnitude while 
maintaining almost the same processing load. 

The memory access poses as bottleneck in practical 
implementation of such decoder. This problem is addressed by 
introduction of a new structure for the interleaver. This structure 
not only makes the implementation of the high-speed decoder 
practically feasible, but also lowers the latency of the decoder 
without extra hardware. It  is shown that such an interleaver can 
be designed to have good BER performance as well. We also 
present a fast algorithm to design such an interleaver, which can 
be used to design S-random interleavers as well. It  has been 
shown that the new interleaver structure can perform as well as 
other good interleavers. 

Graphical interpretation of the proposed code structure is 
provided, which leads to the introduction of a new class of 
Turbo-like codes that have high-speed decoding capability. A 
general architecture for high-speed decoder of the codes in this 
class is presented. Regularity and simplicity of the interleaver 
makes it the architecture of choice for VLSI implementation of 
very high-speed decoders. 

Keywords- Turbo decoder; parallelization; high speed Turbo 
decoder; Interleaver design; 

Recently, some new classes of channel encoders have been 
introduced that achieve near Shannon-capacity performance. 
Turbo codes [4] and low-density parity-check (LDPC) Codes 
are the most important examples. The basic property of these 
codes is the capability of iterative decoding. The iterative 
algorithms can be viewed as a probability or '%belief'' 
propagation algorithm, which is based on message passing [I]. 

This work is partially supported by an UC CORE sponsored by ST 
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Although iterative decoding has a parallel nature for LDPC 
codes, for turbo codes it is very attractive in a serial way as 
they use BCJR algorithm, which is a recursive algorithm. 
Although the message-passing algorithm can be parallelized in 
theory, it is quite inefficient and impractical for 
implementation [2]. In [2] a concurrent turbo decoder is 
studied, which can run by some orders of magnitude faster than 
its serial counterpart. However, the number of components 
used for processing is so large that makes it quite impractical. 
Moreover, the processing load has been increased dramatically, 
which translates to low efficiency. Another approach that is 
proposed in the literature is using overlapping windows [3]. 
However, for a very high-speed decoder the extra processing 
load for overlapping bits causes inefficiency and irregularity. 

In this paper we first propose a method that make parallel 
turbo decoding feasible, while efficiency of the decoder is 
maintained. Then, we extend the idea to a broader range of 
Turbo-like codes that create a new class of codes. All the codes 
in this class are not only regular and parallelizable, but also 
have practical high-speed decoders. A general architecture for 
high speed decoding is presented for these codes. 

In section I1 we describe the decoding algorithm for turbo 
decoders. In section I11 the proposed architecture for the high- 
speed decoder is described and the tradeoff between the speed 
gain and the efficiency is discussed. In section IV we present a 
new structure for the interleaver that makes the implementation 
of the proposed decoder practically feasible. The performance 
of the proposed decoder is discussed in section V and 
simulation results are illustrated. In section VI a new class of 
turbo-like codes are introduced that have capability of high- 
speed decoding. 

Turbo code was introduced in [4]. Berrou, et al, presented 
the Parallel Concatenated Convolutional Code, (PCCC) and the 
iterative decoding algorithm. Later Serial Concatenated 
Convolutional Codes (SCCC) was presented in [5]. PCCC has 
been remained the most popular type of turbo code, which has 



been adopted in UMTS standards as channel coding scheme. In 
the following we briefly describe the PCCC encoder and its 
iterative decoder. 

A PCCC is constructed from two or more parallel 
convolutional encoders that are working on the input sequence 
and its permuted versions in parallel. Each convolutional code 
is called a constituent code. Without any loss of generality, the 
PCCC with two constituent codes is studied in the sequel. The 
generalization of the proposed method described for a simple 
PCCC will be given later for a wide range of Turbo-like codes. 
Fig. 1 depicts the structure of a PCCC with two constituent 
codes. The block denoted by I is the interleaver, which 
permutes the input sequence with a predefined random pattern. 

Figure 1 .  The structure of a PCCC encoder 

The iterative decoding algorithm is based on Maximum-A- 
Posteriori (MAP) decision of the input sequence. However, 
since it is difficult to fmd the MAP solution by considering all 
the observations at the same time, the MAP decoding is 
performed on the observations of each constituent code 
separately. Since two codes have been produced from one 
input sequence, the A-Posteriori-Probability (APP) of data bits 
coming from the first decoder can be used by the second 
decoder and vice versa. The APP information passed between 
the constituent codes is called extrinsic information. Therefore 
the decoding process is carried out iteratively. In [5] a general 
unit, called SISO, is introduced that generates the APPs for a 
convolutional code in the most general case. 

Since the second constituent code is using the permuted 
version of the input sequence, therefore, extrinsic information 
also should be permuted before being used by the second 
decoder. Likewise, the extrinsic information of the second 
decoder is to be permuted in reverse order for the next iteration 
of the first decoder. Fig. 2 shows the iterative decoding bock 
diagram. As we see two SISOs are used to process the 
constituent codes. 

Figure 2. The iterative decoding block diagram 

An efficient algorithm for APP computation of a 
convolutional code is known as BCJR algorithm [6]. In this 
algorithm A-Posteriori-Probabilities for a time-invariant trellis 
encoder can be computed with a complexity that depends 

linearly on the number of states and also on the size of input 
sequence. In fact, SISO is a block that implements the BCJR 
algorithm. Here we briefly describe the structure of this 
algorithm. The main three steps of this algorithm are as follow: 

F-b 

Forward recursion: In this step we compute the likelihood 
of all the states in the trellis given the past observations. 
Starting from a known state; the likelihood of that state is 1 and 
others are zero; we will go ahead along the trellis and compute 
the likelihood of all the states in one trellis section from the 
likelihood of the states in the previous trellis section. The 
computational complexity increases with the number of states. 
This iterative scheme is continued until likelihoods of all the 
states, which are called alpha variables, are computed in the 
forward direction. 

. 
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Backward recursion: This step is quite similar to the 
forward recursion. Starting from a known state at the end of the 
block, we compute the likelihood of previous states in one 
trellis section. Therefore we compute the likelihood of all the 
states in the trellis given the hture observations, which are 
called beta variables. This iterative processing is continued 
until the beginning of the trellis. 
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Output computation: Once the forward and backward 
likelihoods of the states are computed, the extrinsic 
information can be computed from them. The extrinsic 
information can be viewed as the likelihood of each bit given 
the observations. 

The block diagram of a SISO for a convolutional code of 
length N is sketched in Figure 3. The inputs to the SISO block 
are the observations (rl or r2)% initial values for alpha and beta 
variables, (ao and bN) and the extrinsics coming from other 
SISO. The outputs are the alpha and beta variables at the end of 
forward and backward recursions, which are not used any 
more, and the new extrinsics that will pass to the other SISO. 

+ 

Figure 3. Block diagram of the SISO 

In the traditional realization of the SISO, the timing scheduling 
for the three mentioned steps is as follows. The backward 
recursion is done completely for the entire block and all beta 
variables are stored in a memory. Then, the forward recursion 
starts from the first trellis section and computes the alpha 
variables one by one. Since at this time both alpha and beta 
variables are available for the first trellis section, the extrinsic 
for the first bit is computed at this time. Therefore the extrinsic 
computation is done along with the forward recursion. The 
sequence of variables in time is as follows: 

I 

Backward: y ~ . l  yN.2 . . . yl yo 
b~ bNFl ... b2 bl bO 

Forward: Yo YI  . . . YN-z YN-I 
a0 a1 . . . a ~ . ~  ~ N . I  aN 

output: xo x] ... X N - ~ X N - I  

-+ SlS02 - 



Where alpha and beta variables are denoted by a and b, and 
inwming and outgoing extrinsics are denoted by y and x. We 
could exchange the order in which forward and backward 
recursion is done. However, this scheduling outputs the 
extrinsics in reverse order. It should be emphasized that since 
the BCJR algorithm is a recursive one, the processing is done 
serially. 

In this section we present a novel method for iteratively 
dewding the turbo codes. Although this method is applicable 
for every turbo wde, we will explain it in the case of a block 
PCCC code. 

The algorithm is as following. First of all, the received data 
for each constituent wdes are divided into several contiguous 
non-overlapping sub-blocks; so called windows. Then, each 
window is decoded separately in parallel using the BCJR 
algorithm. In other words, each window processor is a decoder 
for a block of the information bits. However, the initial values 
for alpha and beta variables come from previous iteration of 
adjacent windows. Since all the windows are being processed 
at the same time, in the next iteration the initial values are 
ready to load for all of them. Therefore, there is no extra 
processing needed for the initialization of state probabilities at 
each iteration. The size of windows is a very important 
parameter that will be discussed later. Fig. 3 shows the 
structure of the decoder. 
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Figure 4. Parallel turbo decoder structure 

The optimum way to process a window is the serial 
processing using forward and backward recursions; i.e. BCJR 
algorithm. Therefore each window processor is a SISO. 

The proposed structure stems from the message-passing 
algorithm itself. An example of the graph of the PCCC is 
depicted in Figure 5. The graph is partitioned into several (M) 
sub-graphs, which correspond to different windows. Each sub- 
graph still represents a convolutional code, but their initial and 
end states are determined by adjacent windows. 

L--------------------l L------;-----;-----:_I 

Figure 5. Partitioned graph of a simple PCCC 

There are two types of messages that are communicated 
between sub-graphs. First, the messages associated with the 
information bits, i.e. the extrinsic information, which are 
communicated between two constituent codes in the traditional 
approach. Second, the messages that are related to the states in 
window boundaries, we call them state messages. In fact, we 
have introduced new messages that are passed between sub- 
graphs at each iteration. These messages are the same as alpha 
and beta variables that are computed in forward and backward 
recursion of the BCJR algorithm. In the first iteration there is 
no prior knowledge available about the state probabilities. 
Therefore the messages are set to equal probability for all the 
states. In each iteration, these messages are updated and passed 
across the border of adjacent partitions. 

Partitioning of the graph of code helps us to parallelize the 
decoding of one constituent code. The processing for each 
partition is usually done serially. This makes the algorithm 
more efficient. Moreover, the hardware complexity is lowered. 
In fact, we have used a serial-parallel scheduling for the 
message-passing algorithm. In other words, partitioning 
provides a method for serial-parallel method for iterative 
decoding, which achieves both speed gain and low complexity. 

Table I shows the parameters of a decoder. For window 
size at two extremes, the approach is reduces to known 
methods. If window size is B, the number of windows is 1, it 
turns out to the sequential approach. If the window size is 1, 
the architecture reduces to what was proposed in [2]. It should 
be noted that the memory requirement for all cases is the same. 

TABLE I. THE DECODER PARAMETERS 

Processing time is the time needed to decode one block. 
Since all windows are processed at the same time, each SISO is 
done after T,. We assume that all computations associated with 
one trellis section is done in one clock cycle (Tclk). We have I 

Parameter 

N 
M 

B = M x N  

I 

Tw= 2N x T.. 

T = 21x Tw 

P = k 2 I B  

Definition 

Window size 
Number of windows (SISOs) 

Block size 

Number of iterations 

Window Processing Time 

Processing Time (Latency) 

Processing Load 



iterations and each iteration has two constituent codes, so it 
takes 21 x Tw to complete the decoding. It is worth mentioning 
that the processing time determines the latency as well. 
Therefore any speed gain is equivalent to lower latency. 

Processing load is the amount of computations that we 
need. The processing load for each SISO is proportional to the 
number of the state variables. Hence, it is kB, where k is the 
constant and depends on the complexity of the convolutional 
code. It should be noted that processing load in both serial and 
parallel SISO are the same. Therefore the total processing load 
is 21 x kB. 

The timing diagram can be simplified by using vector 
notation, which is shown as following: 

Backward: YN-I Y N - ~  . . . y1 yo 
b~ bN.1 . . . b2 bl bo 

Forward: Yo Y I  ... YN-~YN-I 
8081 ... aN-2aN-laN 

Output: x0 X I  . . . XN-2 XN.1 

The variables that computed at the same time are simply 
replaced with a vector. Each vector has M elements, which 
belong to different window processors (SISOs). For example, 

T we have a. = [a0 a~ a 2 ~  . . . aMN-N] and bo = [bo bN bZN .. . bm- 
N] T. This notation is the generalization of the serial decoder. It 
also will help to appreciate the new interleaver structure for 
the parallel decoder discussed later. 

IV. SPEED GAIN VS. EFFICIENCY 

A. Definitions: 
Two characteristic factors should be studied as performance 

figures. One is the speed gain and the other is the efficiency. In 
ideal parallelization the efficiency is always 1. It means that 
there is no extra processing load needed for parallel processing. 

They are defmed as following: 

Speed gain = TdT 

Efficiency = PdP 

Where To and Po are the processing time and processing 
load for the serial approach, i.e. W=B case. The factors can be 
further simplified to: 

Speed gain = M x  I& 

This is very interesting result. The speed gain and the 
efficiency are proportional to the ratio between number of 
iterations needed for serial case and parallel case. If the number 
of iterations required for the parallel case is the same as the 
serial case, we enjoy a speed gain of M without degrading the 
efficiency, which is ideal parallelization. Therefore we should 
look at the number of iterations required for a certain 
performance to further quantify the characteristic factors. In 
next section we will investigate these factors with some 
simulations. 

B. Simulations results 
For simulations a PCCC with block size of 4800 is chosen. 

The first constituent code is a rate one-half systematic code and 
the second code is a rate one non-systematic recursive code. 
The feed forward and feedback polynomials are the same for 
both codes and are I+D+D) and ~ + D ~ + D )  respectively. Thus 
coding rate is 113. The simulated channel is an AWGN 
channel. The bit error rate performance of the proposed high- 
speed decoder has been simulated for window sizes of 
N=256,128,64,48,32,16,8,4,2, and 1. 

The first observation was that this structure does not 
sacrifice performance for speed. We can always increase the 
maximum number of iterations to get similar performance as of 
the serial decoder. The maximum number of iterations for each 
case is chosen such that the BER performance of the decoder 
equals that of the serial decoder after 10 iterations &=lo). 
Figure 6 .  shows the BER performance of the decoder with 
different window sizes. The curves are almost 
indistinguishable. 

However, in practice, the iterations are stopped based on a 
criterion that shows the decoded data is reliable or correct. We 
have simulated such a stopping criterion in order to obtain the 
average number of iterations needed. The stopping rule that we 
use is the equality between the results of two consecutive 
iterations. The average number of iterations is used for the 
efficiency computation. The average number of iterations for 
low signal to noise ratio is the maximum number of iterations 
for each window size. 

Figure 6. Performances of parallel decoder 

Efficiency and speed gain of the parallel decoder with 
different window sizes is shown in Figure 7. It clearly shows 
that we have to pay some penalty in order to achieve the speed 
gain. Also we observe that the efficiency of parallel decoder 
decreases gracefully for window sizes greater than 32. The 
efficiency is degraded dramatically for very small windows, 
which prohibits us to get speed gain as well. However, the 
speed gain is a decreasing function. 



Figure 8. Efticiency vs. signal to noise ratio. 

Figure 7. Efficiency and speed gain 

As a summary, in Table I1 the maximum number of 
iterations, the average number of iterations, and the 
characteristic factors are tabulated for different window sizes at 
EdNo = 0.7 (BER = le-8). 

TABLE 11. CHARACTERISTIC FACTORS FOR THE PARALLEL DECODER 
@SNR= 0.7 dB (BER=IOE-8) 

Efficiency curves with respect to SNR are illustrated in 
Figure 8. The interesting observation in the efficiency curves is 
flatness of the curves. In other words, the efficiency of the 
parallel decoder is almost constant in all SNR This 
observation translates to almost constant speed gain over the 
whole SNR range. 

In traditional decoder, the extrinsics are usually stored in a 
memory whose locations is accessed one at a time. The order 
in which the extrinsic memory is accessed is different for two 
constituent codes because of the interleaver. It is accessed in 
sequential order for the fust constituent code and in interleaved 
order for the second constituent codes. In practice memory 
addressing is used to access the memory in desired order. 

Although the message-passing algorithm allows us to 
parallelize the decoding process, accessing so many extrinsics 
at the same time poses a practical problem. Since M SISOs are 
running at the same time, M extrinsics are being used 
simultaneously. Having a memory with M read and write ports 
is practically infeasible, especially for large M. The solution is 
to have M sub-memories each one is accessed only by one 
SISO. This should be true not only for extrinsics in sequential 
orders but also in interleaved orders. Therefore, it imposes a 
constraint on the interleaver. In this section we propose an 
interleaver structure that not only makes this possible, but also 
lowers the latency of the overall decoder. 

To explain the interleaver structure we start with the 
reverse interleaver in a serial turbo decoder. It is observed that 
using a reverse interleaver the next iteration can start 
processing as soon as the first extrinsic is ready. In this case 
every new computed extrinsic is used right away. This 
property is only true for the reverse interleaver. The reason for 
this property is that the sequence of extrinsics computed in the 
current iterations matches the sequence needed in the 
backward recursion in the next iteration. The following 
sequences show the observation and extrinsic sequences used 
for two constituent codes in one iteration. 

YN-I YN-2 . . . YI Yo 
b~ bN-I ... b2b1 bo 

YO YI  ... YN-2 YN-I 
a,, al . . . a~.2 a ~ . ~  aN 
xo xl . . . XN-2 XN-1 extrinsic outputs 

XI  . . . XN-2 XN.I extrinsic inputs 
bNb~-l  ... b2 bl bO 

XN-1 X N . ~  ... XI Xo 

a,, al . . . a ~ . ~ a ~ . ~ a ~  
YN-I YN-2 . . . YI Yo 

The indices used for alpha and beta variables denote the 
trellis section number. For extrinsics they denote the bit 
number in the block. The alpha and beta variables in two 
iterations are totally independent, although for simplicity the 
same notation is used for them. 

As it is observed from the sequences in Fig. 6,  the output 
sequence of the second decoder is compatible with the input 
sequence of the first decoder, which means that we can repeat 
this pipelining process for succeeding iterations as well. 



This phenomenon results in a very important advantage: 
the latency of the decoder decreases by almost a factor of two, 
which translates to speed gain as well. We have 

Latency = (2I+l)xTw/2 

This advantage comes at the expense of running both the 
forward and backward recursion circuits all the time. There is 
no extra hardware needed, though. 

Despite this advantage, this interleaver is never used for 
turbo codes. The reason is its poor BER performance. In the 
sequel we use the reverse interleaver in the context of parallel 
turbo decoder. By this we get around this problem by 
incorporating one more permutation while we still exploit the 
advantages. 

For the parallel decoder; the timing diagram for two 
consecutive iterations with the proposed interleaver is shown 
in the following. 

YN-I YN-2 . . . yl YO 
bN-l ... b2 bl bO 

YO Y1 . . . YN-2 YN-I 
a. a1 . . . a ~ . 2  aN.1 a~ 
xo X I  . . . XN-2 XN-I extrinsic outputs 
6 6  6 6  
no n, ... n ~ . 2  X N - ~  interleavers 
6 6  6 6  
xo xl  . . . XN-2 XN., extrinsic inputs 
bN bN-, ... b2 bl bO 

XN-1 XN-2 . . . XI  xg 

a. a1 ... a ~ . 2 a ~ . l a ~  

YN-I YN-2 ... Y1 YO 

The idea is to use the same vector with permuted elements. 
So the xo in the next iteration is permuted, &(xo), and yo will 

be replaced by TG,-~(xo). If we did not have the &, n,, ..., &., 
interleavers, there would be nothing more than M parallel 
decoders each one working on a separate block. However, the 
presence of the interleavers creates a randomness that will 
improve the performance of the code while the architecture of 
the code is almost intact, i.e, the advantages of the reverse 
interleaver are still in place. 

The permutations are done differently for each vector. 
Therefore the interleaver block is time-variant, but memory- 
less. Because the number of parallel blocks is usually small, 
the interleaver implementation is feasible. The structure of the 
interleaver can be best understood by organizing the bits in a 
matrix with each row having the bits processed in a SISO. 
Each column of this matrix is a vector that is computed at a 
time. We have a two-ster, interleaver: a reverse row interleaver 
and a random column interleaver. If the matrix elements are 
denoted by Pij, where i=O,l, ..., M-1 and j=0,1, ..., N-1, then the 
equivalent interleaver sequence is { Q, }= { N*Pij + N-j ). As 
an example a turbo code with block length of 20 is 
decomposed into M=5 sub-blocks of N=4 bits. Therefore, 
there are 5 SISOs working in parallel; each one works on a 
block of 4 bits. Table I11 shows an example of the interleaver 

in matrix format. The equivalent interleaver is (1 1, 2, 5, 4, 15, 
18, 9, 12, 19, 14, 1, 16, 3,6, 13, 8, 7, 10, 17,O). 

TABLE 111. AN EXAMPLE OF THE INTERLEAVER 

In this section we will explain how to design such an 
interleaver. The algorithm has two main steps: constructing a 
random interleaver and updating based on a certain constraint. 
Fig. 8 shows the flowchart of this algorithm. 

f Start 3 

with N random 
interleaver 



Fig. 8: The flowchart of the algorithm. 

Using the matrix format for the interleaver, we initialize the 
interleaver design by taking a random interleaver for each 
column. In the next step we will update the interleaver by 
applying a certain constraint. To update the interleaver we use 
column-wise bit swapping, which ensures that the structure of 
the interleaver is preserved. 

Since the constraints for interleaved designs are usually 
applicable for one-dimensional interleaver, to update the 
interleaver it is best to compute the equivalent interleaver, 
which can be done on the fly. The constraint that we have 
used is the spread of the interleaver. In other words, we want 
to design an S-random interleaver with the proposed structure. 
An ordinary S-random can be viewed as a special case for this 
structure, i.e. when we have only one c o l u k .  Therefore, this 
algorithm not only presents an algorithm with the proposed 
structure, but also gives a fast algorithm for designing S- 
random interleavers. 

Starting from the first row, i.e. the first SISO bits, the 
constraint for each bit is checked given the previously 
designed bits. If the constraint is met, we go to the next bit. 
Otherwise we check the remaining elements in the column in 
place of this bit. If one of them satisfies the constraint, we 
exchange the indices in the column and go to the next bit. If 
not, we try exchanging this bit with the previously designed 
bits in the column. In this situation, when we exchange two 
bits the constraint for both bits should be satisfied. If none of 
the previously designed bits can be exchanged with this bit, 
then the algorithm fails. There are two options available in 
case the algorithm fails: one is to make the constraint milder 
and the other one is to redo everything with a new random 
matrix. 

We have observed that this algorithm is very fast for S- 
random interleaver design when the spread is less than 
sqrt(Bl2). The maximum spread that we can achieve for the 
structured interleaver is slightly smaller than that of the 
ordinary one. Therefore, one should expect some degradation 
in performance. 

A. SIMULA TION RESULTS 

For simulations two PCCCs with block sizes of 1024 and 
4096 are chosen. The first constituent code is a rate one-half 
systematic code and the second code is a rate one non- 
systematic recursive code. The feed forward and feedback 
polynomials are the same for both codes and are I+D+D' and 
I+D'+D~ respectively. Thus coding rate is 113. The simulated 
channel is an AWGN channel. 

Two interleavers with block length of 1024 (32x32) and 
4096 (128x32) have been designed with the proposed 
algorithm. The bit error rate performance of the decbdeis has 
been simulated and compared with that of the decoder with S- 
random interleaver. The maximum number of iterations for 
each case is 10. 

Fig. 9 illustrates the performance comparison. The curves 
corresponding to the performance of the decoder with S- 
random interleaver are named with S suffix and the proposed 
two-dimensional S-random interleaver with S2 suffix. As we 

see the S-random interleaver has a slightly better error floor. 
For the decoders with size 4096 the difference between the 
error floors is more noticeable. However, the codes have equal 
threshold in both cases. The error floor can be reduced with a 
more powerful constraint in the interleaver design algorithm. 

Figure 9. Performance comparison for B=1024 

VI. GRAPHICAL VIEW 

In this section we look at this problem from a graphical 
point of view. The parallel turbo decoder comprises M 
identical sub-graphs that are running in parallel. We put the 
partitions in parallel planes and then look at the projected 
graph. The projected graph for turbo code for the example of 
Table I11 is shown in Figure 10. 

I I I I 

I lnterleaver 

c 2 6  6 6 bi 
Figure 10. Projected graph 

The projected graph can be viewed as the vectorized 
version of the actual graph. In other words, there is a message 
vector associated with every edge in the projected graph. There 
are three types of edges in the projected graph. First, the edges 
that are inside the partitions, which are shown in solid lines. 
The associated messages are internal messages that are not 
communicated with other partitions. In PCCC case, these are 
alpha and beta variables. Second, the edges that connect 
adjacent partitions, which are shown in black dashed lines. The 
associated messages are communicated between adjacent 



partitions across their border; we call them border messages. 
Initial values for alpha and beta variable at each iteration are 
border messages in the parallel PCCC.  Third, the edges that 
connect two constituent codes. These edges are interleaved 
before reach the other constituent code. The extrinsics are 
associated with these edges. The structure of memories for 
extrinsics is such that only one extrinsic vector is accessible at 
a time. In order to solve the memory access problem, the 
interleaver preserves the extrinsic vectors in its entirety, but the 
permutation is allowed within a vector. The permutation within 
a vector is the permutation among the window processors or 
different planes in the overall graph. In other words, the 
interleaver consists of several independent permutations within 
the extrinsic vectors. 

The interesting property about the projected graph is that 
the proposed interleaver is viewed as some disjoint edges. The 
projected graph for turbo code for the example of Table 111 is 
shown in Figure 11. The red dashed edges indicate that the 
permutation is allowed within a vector. Therefore, projected 
graph not only shows the structure of the code, but also its 
interleaver. 

L -1 

Figure 1 1 .  Projected graph with the proposed interleaver 

The way edges are connected between two constituent 
codes in the projected graph is another flexibility in the 
interleaver design. It is very instructive to note that the reverse 
interleaver, used for decreasing the latency, is clearly shown in 
the figure- connecting the edges of two component graphs in 
reverse order. 

VII. DESIGN BASED ON PROJECTED GRAPH 

In this section design methodology for turbo-like codes 
based on the projected graph is presented. This approach is 
very appealing because the resulting code is definitely is 
parallelizable and the performance of the code can be analyzed 
very efficiently by its component graphs using density 
evolution technique. The following section explains how to 
design LDPC codes with parallel decoding capabilities. 

There are two ways that could be pursued in order to design 
codes based on projected graphs. First approach is the one that 
was used so far to parallelize the decoder. This is based on 
partitioning an existing code graph into some sub-graphs. This 

method works on any regular or semi-regular graph. The 
projected graph includes one partition of each component code, 
which is called component graph. The component graphs are 
connected with edges that represent independent interleavers. 
To show the broadness of this approach we have illustrated the 
projected graphs for a PCCC with three constituent codes, a 
simple SCCC,  repeat-accumulate @A) and irregular-repeat- 
accumulate (IRA) codes in Figure 12. 

Figure 12. Projected graphs (a) PCCC with 3 constituent codes @) a simple 
SCCC (d) RA code (q=3) (d) IRA code (q=2,3) 



The second approach is to design the code by designing its 
projected graph. In this method we should design some 
component graphs and the connections between them in order 
to have good performance. In other words, the partitions are 
designed first and then put together to create constituent codes. 

The most important example of this approach is LDPC 
codes with projected graphs. There are two component graphs: 
one contains only single parity check codes (variable degrees) 
and the other has only repetition codes (variable degrees). One 
example of such a code is shown in Figure 13. 

Figure 13. A LDPC with projected graph 

There are some noticeable facts about this projected graph. 
All variable nodes are in one component graph, which means 
that all the observations is stored and processed in one kind of 
window processor. Variable and check node can have different 
degrees. Therefore this structure is capable of implementing 
regular and irregular LDPC codes. The degree distribution of 
variable and check nodes is known from the projected graph. 
There are no local messages and no border messages are 
passed between adjacent sub-graphs. Therefore, the projected 
graph can be represented graphically as a simple tanner graph. 
The graphical representation for above example is shown in 
Figure 14. The number of interleavers needed for this code is 
equal to the number of edges of the projected graph. 

Figure 14. Simple graphical representation of a LDPC projected graph 

The only disadvantage of this method for code design is 
that it does not provide an efficient encoder. Sometimes simple 
encoding is not possible for codes designed this way. 

VIII. GENERAL HARDWARE ARCHITECTURE 

In this section we present general hardware architecture for 
implementation of parallel turbo-like decoders. Without any 
loss of generality we focus on turbo-like codes with two 
constituent codes. This can be easily extended to codes with 
several constituent codes, see appendix A. The general 

hardware architecture is shown in Figure 15. EXT, denotes the 
external memory for nth window processor. 

1 processor w i y  1 processor Wi: . . mq w ~ ;  1 1 sctm/ing 1 
processor Controller 

Figure 15. Parallel decoder hardware architecture 

Since the processors are identical and are running in 
parallel the scheduling is the same for all of them. Therefore, 
there is only one scheduling controller needed for each 
constituent codes. The scheduling controller determines which 
message vector is accessed and what permutation is used. The 
permuter is a memory-less block that permutes the message 
vector on the fly. Since the message vectors are permuted 
differently, the permuter should be programmable. If M, the 
number of window processors, is large, the permuter can be the 
bottleneck of the hardware design. 

The architecture of one window processor is depicted in 
Figure 16. 

I I Observation Mern I I 
I I Internal Messages Mern 1 I 

Figure 16. Window processor hardware architecture 

AM and BM denote the registers which contains border 
messages. The observation memory is loaded at the beginning 
of the decoding and remains intact until end. This memory is 
not necessary for all window processors. 
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IX. CONCLUSION 

We have proposed an efficient architecture for parallel 
processing of turbo decoding. Non-overlapping windows were 
used that reduces the processing load. Interleavers are designed 
to have collision free memory access. The tradeoff between 
speed gain and efficiency was studied. Simulation results 
showed that the more the speed gain is, the lower is the 
efficiency. In other words, serial processing is more efficient 
that processing. ~owev&,  with window-size 
this structure not only can achieve some orders of magnitude in 
speed gain, but also maintains the efficiency in processing. 

The memory access problem was addressed by designing a 
special interleaver. Simulation results show that the 
performance of code with the proposed interleaver structure is 
as good as other interleavers. 

The proposed algorithm was explained based on message 
passing algorithm and the graphical interpretation of the code 
structure was presented. This led to introduction of a new class 
of turbo-like codes that can be decoded very fast, which are the 
codes with projected graph. This classification provides an 
alternative method to design turbo-like codes for high-speed 
decoding. 

At the end, a general architecture for decoding this class of 
codes was also presented. The regularity and simplicity of the 
proposed architecture make it the architecture of choice for 
VLSI implementation of high-speed turbo-like codes. 
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Turbo-like codes consist of constituent codes connected 
with random or psuedo-random interleavers. The iterative 
decoding is performed by passing messages between these 
constituent codes. 

In most cases there are only two constituent codes. 
However, it can be shown that we can almost always 
rearrange the code such that a turbo-like code with only two 
constituent codes is obtained. 

The main idea is to align the interleavers in one line and 
divide the constituent codes into two sets, which comprise the 
new component codes. This is explained with some examples 
in Figure 17. 

Figure 17. (a) Parallel Concatenated codes (b) Serial Concatenated codes (c) 
Hybrid concatenated codes. 
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